Relativistic scaling of
astronomical quantities and
the system of astronomical units

Sergel A.Klioner

Lohrmann Observatory, Dresden Technical University

Lohrmann Observatory, 4 May 2007



Content

 Relativistic time scales and reasons for them:
TCB, TCG, proper times, TT, TDB, T,
e Scaled-BCRS
e Scaled-GCRS
 Astronomical units in Newtonian and relativistic frameworks
* Do we need astronomical units?

« TCB/TCG-, TT- and TDB-compatible planetary masses



Relativistic Time Scales: TCB and TCG

-t=TCB Barycentric Coordinate Time = coordinate time of the BCRS

« T = TCG Geocentric Coordinate Time = coordinate time of the GCRS

These are part of 4-dimensional coordinate systems so that
the TCB-TCG transformations are 4-dimensional: (rl=x"—x.(t))

I At iyl 4 R+ i =
T =t=(AD+verd )+ < (B + B'OF + B ©Orr! + C(t.x))+ O(c)

» Therefore: TCG =TCG (TCB,X_i)

* Only if space-time position is fixed in the BCRS X = X;bs (1)
TCG becomes a function of TCB:

TCG =TCG(TCB,x., (TCB)) =TCG(TCB)



Relativistic Time Scales: TCB and TCG

- Important special case X' = X_(t) gives the TCG-TCB relation

at the geocenter:
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Relativistic Time Scales: proper time scales

T proper time of each observer: what an ideal clock moving

with the observer measures...

» Proper time can be related to either TCB or TCG (or both) provided
that the trajectory of the observer is given:

x,.(t) andlor X° (T)
The formulas are provided by the relativity theory:

dr

2 =Ry R
E = [_goo (t’xobs (t)) = E gOi (t’xobs (t)) Xobs (t) e ? gij (t’xobs (t)) Xobs (t) Xobs (t)j

dr 2 s 1 = -b s
d_T = (_GOO (T’Xobs(T)) _EGOa (T’Xobs(T)) Xobs(T) _?Gab (T’Xobs(T)) Xobs(T) xobs(T)]



Relativistic Time Scales: proper time scales

» Specially interesting case: an observer close to the Earth surface:

dr iSHSLE 3 ¥
9 -1 2 a1, tef@&w

“y 10—17

e |dea: let us define a time scale linearly related to T=TCG, but which
IS numerically close to the proper time of an observer on the geoid:

TT =(1- L) TCG, L, =6.969290134x10™
s

P —~ &
can be neglected

d 1 | -
2 :1_—("terms ~ h, v'"+"tidal terms"+...)+... in many cases

dTT G

h is the height above the geoid

V' isthe velocity relative to the rotating geoid



Relativistic Time Scales: TT

* |dea: let us define a time scale linearly related to T=TCG, but which
IS numerically close to the proper time of an observer on the geoid:

TT =(1-L,)TCG, L, =6.969290134x10™

o=

T oy i
can be neglected

IN many cases

2 =1—i("terms ~h, v'"+"tidal terms"+...)+...
dTT c’

h is the height above the geoid

vi IS the velocity relative to the rotating geoid

» To avoid errors and changes in TT implied by changes/improvements
In the geoid, the IAU (2000) has made L to be a defined constant:

L, =6.969290134 x IKES

* TAl is a practical realization of TT (up to a constant shift of 32.184 s)

7 * Older name TDT (introduced by IAU 1976): fully equivalentto TT



Relativistic Time Scales: TDB-1

* |dea: to scale TCB in such a way that the “scaled TCB” remains close to TT

* |JAU 1976: TDB is a time scale for the use for dynamical modelling of the
Solar system motion which differs from TT only by periodic terms.

 This definition taken literally is flawed:
such a TDB cannot be a linear function of TCB!

But the relativistic dynamical model (EIH equations) used by e.g. JPL
Is valid only with TCB and linear functions of TCB...



Relativistic Time Scales: T,

 Since the original TDB definition has been recognized to be flawed

Myles Standish (1998) introduced one more time scale Teph differing
from TCB only by a constant offset and a constant rate:

T_=R.-TCB+T

ep ephO

» The coefficients are different for different ephemerides.
* The user has NO information on those coefficients from the ephemeris.

» The coefficients could only be restored by some additional numerical
procedure (Fukushima’s “Time ephemeris”)

* T, IS de facto defined by a fixed relation to TT:

eph
by the Fairhead-Bretagnon formula based on VSOP-87
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Relativistic Time Scales: TDB-2

The IAU Working Group on Nomenclature in Fundamental Astronomy
suggested to re-define TDB to be a fixed linear function of TCB:

TDB to be defined through a conventional relationship with TCB:

TDB =TCB - L, x(JD,, —T,)x86400 + TDB,

e T, = 2443144.5003725 exactly,

* JD;c5 = T, for the event 1977 Jan 1.0 TAIl at the geocenter and
Increases by 1.0 for each 86400s of TCB,

* L =1.550519768x105,
e TDB,=-6.55 x107°s.
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Linear drifts between time scales

Pair Drift per year Difference at J2007
(seconds) (seconds)

TT-TCG 0.021993 0.65979

TDB-TCB 0.489307 14.67921

TCB-TCG 0.467313 14.01939




Scaled BCRS: not only time Is scaled

* If one uses scaled version TCB — T, or TDB — one effectively uses
three scaling:

- time t =F-TCB+t,

« spatial coordinates YEa =

- masses (u= GM) of eachbody 1 = F - u
E=l=1L

WHY THREE SCALINGS?
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Scaled BCRS

» These three scalings

13

together leave
the dynamical equations
unchanged:

 for the motion of

the solar system bodies:

(first published in 1917!)

o for light propagation:
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Scaled BCRS

» These three scalings lead to the following:

14

semi-major axes
period
mean motion

the 3" Kepler’s law

a =F-a
P=F-P
"=F*'.n



Scaled GCRS

* If one uses TT being a scaled version TCG one effectively uses
three scaling:

« time [ =TE—LTCe

. spatial coordinates ) EE B

e e e e T
L=1-L,

e International Terrestrial Reference Frame (ITRF) uses such scaled GCRS
coordinates and quantities

15



Quantities:
numerical values and units of measurements

e Arbitrary quantity 4 can be expressed by a numerical value{ A} XX

INn some given units of measurements |:A:| o

L

e XX denote a name of unit or of a system of units, like Sl

 Notations taken from 1SO 31-0
“Quantities and units — Part 0: General principles”, 1992

16



Quantities:
numerical values and units of measurements

« Consider two quantities A and B, and a relation between them:
B=F:-A F =const

 No units are involved in this formula!

e The formula A = {A} |:A:| should be used on both sides before
XX XX

F 1Al
Al

numerical values can be discussed.

e In particular, { B}
XX

Is valid if and only if |: :|

1



Scaled BCRS

 For the scaled BCRS this gives:

a}g(x {”}gfx = {ulxx,

13 2
a byx " yx = xxs

 Numerical values are scaled in the same way as quantities if and only if
the same units of measurements are used.

18



Units of measurements: Sl

e S| units

e _t]SI =second =S

» length Xl}I = meter =m

* mass M L = Kilogram = kg

o Official definitions from the S| document, published by BIPM:

19

The second is the duration of 9192631770 periods of the radiation
corresponding to the transition between the two hyperfine levels of the
ground state of the caesium 133 atom.

The metre is the length of the path travelled by light in vacuum during a
time interval of 1/299 792 458 of a second.

The kilogram is the unit of mass; it is equal to the mass of the
international prototype of the kilogram.



Astronomical units in the Newtonian framework

e System of astronomical units
« time t}A = day
* length _X] = AU
e 1

> mass M ]A = Solar mass = SM

e Day is by definition 86400 S| seconds

* The mass of the Sun expressed in astronomical units of mass is by
definition 1
Any possible variability of the solar mass is ignored!

20



Astronomical units in the Newtonian framework

e Astronomical units vs Sl ones;

T :t]A ~d -[tL ~d =86400

enon [x], =],
s W] =a W]

« AU is the unit of length with which the gravitational constant G takes
the value (IAU 1938, Vith General Assembly in Stockholm)

{G}A = k% =0.01720209895>

* AU Is the semi-major axis of the [hypothetic] orbit of a massless particle

which has exactly a period of 27 [ k ~ 365.256898326328. .. days

In the framework of unperturbed Newtonian Keplerian motion around the Sun

gl



Astronomical units vs. geometrized units

« Geometrized units are defined implicitly by setting three fundamental
constant to unity:

 Gravitational constant {G}geo =1

« speed of light {C} =1
geo
e Planck constant {h} =
geo
* Why possible? _G] - mskg 152
Sre|
B3 IS

h| = m’kg s

.



Astronomical units vs. geometrized units

« Both system of units — geometrized and astronomical - can be used

without any relation to the “directly measurable” SI units

» The relations to the Sl units of length, time and mass can only be obtained
from experimental data.

23



Astronomical units in the Newtonian framework

e Values in S| and astronomical units:

« distance (e.g. semi-major axis) {X}A = {X}S,
« time (e.g. period) {t}A = {t}SI

=02l

» Mass parameter of a body in Sl can be directly expressed as

24

M},

Sun}A

0



25

Astronomical units In the relativistic framework

Be ready for a mess!



Astronomical units In the relativistic framework

e Let us interpret all formulas above as TCB-compatible astronomical units

* Now let us define a different TDB-compatible astronomical units

t], =day’ =d"[t],

x], =AU =2 x
M), =SM"=a’ [M]

=)

e Four constants define the system of units: d*, x*, (x*, k™

Sl

26



Astronomical units In the relativistic framework

» Considering that

] = (k) (M),

b () {E] 40,

e the only constraint on the constants reads

(k) M.}, [% T(d_*jz =F=1-1,

k* { MSU“}A




Astronomical units In the relativistic framework

e Possibility I: Standish, 1995

\

e This leads to {X*} 213 {X} . strange scaling...
Ax S0

'), =F-1th,

28



Astronomical units In the relativistic framework
» Possiblility II: Brumberg & Simon, 2004; Standish, 2005
d=d =86400

— " > 5
(k ) {Msun}A*_ F.k {Msun}A-
T
e This leads to {

>

e The same scaling as with SI:
() —Fft) X, =i
R R R
W fy = Fo{ul,
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How to extract planetary masses from the DEs

 From the DE405 header one gets:

TDB-compatible AU: x =1.49597870691x 10"

» Using that (also can be found in the DE405 header!)

{115, } = K? = 2.959122082855911025x 10
A*

one gets the TDB-compatible GM of the Sun expressed in Sl units

(i), ={ui) () 86400°=1.32712440018x10%

e The TCB-compatible GM reads
(this value can be found in IERS Conventions 2003)

{ o}, = {11,y ) =1.32712442076 107



<A:

Scaled GCRS

» Again three scalings (“**” denote quantities defined in the scaled GCRS;
these TT-compatible quantities):

* time T =L-TT
« spatial coordinates e
» masses (u=GM) of each body ,u** =L-u
e the scaling is fixed e=cf= LG

* Note that the masses are the same in non-scaled BCRS and GCRS...

 Example: GM of the Earth from SLR (Ries et al.,1992; Ries, 2005)

{u** } =(398600441.5+0.4) x10°
Sl

Earth

e TT-compatible

» TCG-compatible {H } L{HH } =(398600441.8+0.4) x10°
Earth ) g Sl

A L ey



TCG/TCB-, TT- and TDB-compatible
planetary masses

e GM of the Earth from SLR;:

e TT-compatible {,u** } =(398600441.5i 0.4) x10°
Sl

Earth

1

ream gt ., -]
CG/B-compatible roh S U

**

} ~(398600441.8+0.4) x10°
Sl

Earth

- TDB-compatible {1 —(1-L,){u_ | —(398600435.6:+04) x10°
Earth ) g Earth ) gj

Should the SLR mass be

 GM of the Earth from DE: used for ephemerides?

(398600435.6) x10°

« DE403 {u* }
Sl

Earth

(398600432.9) x10°

Earth

. DE405 {/f }s.

<
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Do we need astronomical units?

* The reason to introduce astronomical units was that the angular
measurements were many orders of magnitude more accurate than
distance measurements.

e Arguments against astronomical units

» The situation has changed crucially since that time!

« Solar mass is time-dependent just below current accuracy of

ephemerides
: -13 |,p-1
M, /M ~107" yr
e Complicated situations with astronomical units in relativistic
framework

* Why not to define AU conventionally as fixed number of meters?

* Do you see any good reasons for astronomical units in their current form?

NO!



